Markov Random Field Models: A Bayesian Approach to Computer Vision Problems

نویسندگان

  • Gerda Kamberova
  • Gerda L. Kamberova
چکیده

The object of our study is the Bayesian approach in solving computer vision problems. We examine in particular: (i) applications of Markov random field (MRF) models to modeling spatial images; (ii) MRF based statistical methods for image restoration, segmentation, texture modeling and integration of different visual cues. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-92-29. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/491 Markov Random Field Models: A Bayesian Approach To Computer Vision Problems MS-CIS-92-29 GRASP LAB 310

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

Markov Random Field Models in Computer Vision

A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is de-ned as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The latter relates to how data is observed and is problem domain dependent. The former depends on how var...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Guest Editors' Introduction to the Special Section on Probabilistic Graphical Models

An exciting development over the last decade has been the gradually widespread adoption of probabilistic graphical models (PGMs) in many areas of computer vision and pattern recognition. Representing an integration of graph and probability theories, a number of families of graphical models have been studied in the statistics and machine learning literatures. Examples of directed graphical model...

متن کامل

A comparison of Neural and Graphical Models for Syntactic and Structural Pattern Recognition

Recent developments in the theory and uses of Bayesian Networks in pattern recognition and image understanding (PRIU) raise questions about the relationships between Bayesian compared to non-Bayesian approaches. In this paper we compare Neural-based verses Bayesian-based methods for PRIU. We conclude with the view that a singular PRIU architecture that models “from pixels to predicates” in one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011